Внешнеэкономическая деятельность и внешняя торговля

Полезное


Н.А. Галактионова
Промышленная экология

Учебное пособие для студентов заочного отделения / Москва: Международный независимый эколого-политологический университет, 2002

Предыдущая

Тема 4. Основные технологические процессы

4.5. Тепловые процессы

4.5.5. Выпаривание

Выпаривание — процесс концентрирования растворов твердых нелетучих веществ путем удаления жидкого летучего растворителя в виде паров. Сущность выпаривания заключается в переводе растворителя в парообразное состояние и отводе полученного пара от оставшегося сконцентрированного раствора. Выпаривание обычно проводится при кипении, т. е. в условиях, когда давление пара над раствором равно давлению в рабочем объеме аппарата. Пар, образующийся над кипящим раствором, называется в технике выпаривания вторичным паром.

Процесс выпаривания относится к числу широко распространенных. Последнее объясняется тем, что многие вещества, например едкий натр, едкое кали, аммиачная селитра, сульфат аммония и др., получают в виде разбавленных водных растворов, а на дальнейшую переработку и транспорт они должны поступать в виде концентрированных продуктов.

Научный анализ процессов выпаривания был дан впервые в 1915 г. проф. И. А. Тищенко в монографии «Современные выпарные аппараты и их расчет»; ему же принадлежат работы, посвященные изучению свойств кипящих водных растворов.

Технические процессы выпаривания растворов. В химической технике используются следующие основные способы выпаривания: простое выпаривание, проводимое как непрерывным, так и периодическим методами, многократное выпаривание, осуществляемое только непрерывно, и выпаривание с применением теплового насоса. Два последних способа проведения процесса обеспечивают значительную экономию тепла и поэтому имеют преобладающее значение.

Все перечисленные процессы проводят как под давлением, так и под вакуумом, в зависимости от параметров греющего пара и свойств выпариваемых растворов.

Простое выпаривание. Простое выпаривание осуществляется на установках небольшой производительности, когда экономия тепла не имеет особого значения и может проводиться как периодически, так и непрерывно.

В периодическом процессе с единовременной загрузкой исходный раствор помещается в выпарной аппарат, где нагревается до температуры кипения и выпаривается. Образовавшийся вторичный пар поступает в конденсатор. Конденсат выводится из системы, упаренный раствор перекачивается в сборник готового продукта.

Многократное выпаривание. Многократное выпаривание — процесс, при котором в качестве греющего используют вторичный пар и, следовательно, достигается значительная экономия тепла. Проведение подобного процесса возможно либо при использовании греющего пара высокого давления, либо при применении вакуума.

Сущность многократного выпаривания состоит в том, что процесс выпаривания проводится в нескольких соединенных последовательно аппаратах, давление в которых поддерживают так, чтобы вторичный пар предыдущего аппарата мог быть использован как греющий пар в последующем аппарате. Например (рис. 4.25), вторичный пар давлением РВТ1, образовавшийся в аппарате 1, используется как греющий пар давлением РГР2 в аппарате 2 (РВТ1  ≈ РГР2,).

Рис. 4.25. Схема многократного выпаривания (прямоточная)

Очевидно, что многократное выпаривание позволяет сокращать расход тепла на проведение процесса приблизительно пропорционально числу последовательно соединенных аппаратов или, как принято называть в технике выпаривания, числу корпусов. Установки для многократного выпаривания всегда имеют несколько корпусов поэтому называются многокорпусными.

Сопоставим прямоточную и противоточную схемы. Очевидным преимуществом прямоточной схемы является возможность перемещения раствора из корпуса в корпус без применения насосов, работающих на горячих потоках. К недостаткам прямоточной схемы можно отнести неблагоприятные для теплопередачи условия.

В [3] показано, что преимуществом противоточной схемы является меньшая поверхность нагрева, а недостатком — необходимость включения в схему насосов, работающих на горячих потоках.

Недостатки прямоточных схем менее существенны, чем противоточных, поэтому первые получили значительно большее распространение в промышленности.

Предыдущая


Copyright © 2007-2022, Недвиговка.Ру