Внешнеэкономическая деятельность и внешняя торговля

Полезное


М.В. Горшков
Экологический мониторинг

Учебное пособие. – Владивосток: Изд-во ТГЭУ, 2010. – 313 с.

Предыдущая

Практикум

Тема 1. Оценка приоритетных контролируемых параметров природной среды

В первой части учебного пособия мы рассмотрели основные понятия экологического мониторинга, такие как загрязнение, ПДК, ПДУ, ПДС, ПДВ, ОБУВ, порог вредного воздействия, классы опасности. Содержание вещества определяют с помощью типовых реакций и сравнивают с нормативом. Приведём ряд таких типовых реакций:

Определение концентрации ионов двухвалентного железа. К 5 мл воды добавить на кончике ножа (0,1 г) гидросульфата калия, 0,1 г смеси (красная кровяная соль и сахарная пудра 1:9) и хорошо взболтать. В присутствии ионов двухвалентного железа появляется сине-зеленое окрашивание. Светло-сине-зеленый: 1-6 мг/л; сине-зеленый: 6-10 мг/л; синий: 10-15 мг/л; темно-синий: 15-30 мг/л.

Определение концентрации ионов трёхвалентного железа. К 5 мл природной воды прибавить 1-2 капли концентрированной соляной кислоты и 5 капель 10%-ного раствора роданида аммония. В присутствии ионов трехвалентного железа появляется красный цвет. Слабо-красновато-желтоватый: 0,95-0,4 мг/л; желтовато-красный: 0,4-1,0 мг/л; красный: 1-3 мг/л; ярко-красный: 3-10 мг/л.

Определение концентрации ионов хлора. К 5 мл природной воды прибавить 1-2 капли 10%-ного раствора нитрата серебра, подкисленного азотной кислотой. Образуется осадок или муть. Слабая муть: 1-10 мг/л; сильная муть: 10-50 мг/л; хлопья, осаждаются сразу: 50-100 мг/л; белый объемистый осадок: более 100 мг/л.

Определение концентрации сульфат-ионов. К 5 мл воды прибавить 4 капли 10%-ного раствора соляной кислоты и 4 капли 5%-ного раствора хлорида бария. Нагреть. Образуется муть или осадок. Слабая муть через несколько минут: 1-10 мг/л; слабая муть сразу: 10-100 мг/л; сильная муть: 100-500 мг/л; большой осадок, быстро оседающий: более 500 мг/л.

Обнаружение нитрат-ионов. К 5 мл воды осторожно, по стенке пробирки, прибавить 1 мл реактива, полученного растворением 1 г дифениламина в 100 мл концентрированной серной кислоты. Если есть нитрат-ионы, то появляется синее окрашивание. Но этой реакции мешают нитрит-ионы, которые предварительно надо разрушить. К исследуемой воде добавляют несколько кристаллов хлорида аммония и кипятят 2-3 минуты. Образовавшийся нитрит аммония разрушается до азота и водорода. После этого проводят реакцию с дифениламином.

Задача №1. Оцените качество воды проб № 1340 – р. Амур и № 1341 – ГОСВ (городские очистные сооружения водопровода). Дата и время отбора: проба № 1340 - 19.05.06 г. в 10.00, проба № 1341 - 19.05.06 г. в 11.00. Дата и время доставки: проба № 1340 – в 10.30, проба № 1341 – в 11.30.

Таблица 1.1

Пробы воды реки Амур

Показатели

ПДК - для питьевой воды (СанПиН 2.1.4.1074-01)

Предел обнаружения

Проба № 1340 р. Амур

Проба № 1341 (после ГОСВ)

Бензол, мг/л

0,01

0,005

<0,005

0,005

Толуол, мг/л

0,5

0,005

<0,005

<0,005

Пестициды (гексахлорбензол), мг/л

0,001

0,00005

<0,00005

<0,00005

Фенолы летучие, мг/л

0,001

0,0005

0,0009

<0,0005

Железо, мг/л

0,3

ОД

2,0

<0,10

Нитраты, мг/л

45

0,1

1,5

1,4

Задача №2. ПДК хлора в питьевой воде 0,5 мг/л. В источнике А оказалась концентрация хлора 0,9 мг/л, а в источнике Б – 0,2 мг/л. Какую воду пить можно, а какую нельзя?

Рассмотрим также некоторые задачи с растворами. Для их решения рекомендуется повторить разделы химии, связанные с количественными расчётами веществ.

Задача №3. Космический корабль выбрасывает в атмосферу 7 тонн оксидов азота. 1 молекула оксида азота уничтожает 10 молекул озона. Взаимодействие идет по реакциям:

NO + O3 = NO2 + O2 ; NO2 + O = NO + O2.

Рассчитайте, сколько тонн озона уничтожит такой выброс оксидов азота, если в реакциях участвуют все выброшенное кораблем вещество.

Задача №4. При анализе на содержание аэрозоля серной кислоты в атмосферном воздухе были получены следующие данные: скорость аспирации воздуха 6 л/мин, время аспирации – 15 минут, содержание серной кислоты в пробе 40 мкг. Условия отбора проб: фильтры АФАХА, электроаспиратор, температура – 20°С, давление 769 мм рт. ст. Определить концентрацию аэрозоля серной кислоты в исследуемом воздухе. ПДК тумана серной кислоты – 1 мг/м3. Ответ: 0,47 мг/м3.

Задача №5. Для определения разовой концентрации диоксида азота исследуемый воздух со скоростью 0,3 л/мин в течение 35 минут протягивают через поглотительный прибор с пористой пластинкой, содержащей 5 мл поглотительного раствора (реактив Грисса-Илосвая). Результаты анализа показали, что в пробе содержание диоксида азота составило 1,5 мкг. Рассчитать разовую концентрацию диоксида азота в исследуемом воздухе, если отбор пробы проводился при 15°С и давлении 100 Кпа. Ответ: 0,152 мг/м3.

Задача №6. При анализе воздуха на содержание озона использовалась реакция взаимодействия его с ионами двухвалентного железа в кислой среде. Исследуемый воздух аспирировался в течение 40 минут со скоростью 0,5 л/час. Эквивалентное содержание озона в пробе составило 2,82 мкг. Рассчитать концентрацию озона в исследуемом воздухе, если отбор пробы проводился при 18°С и давлении 105,6 Кпа. Ответ: 8,81 мг/м3.

Задача №7. Определение оксида углерода в атмосферном воздухе основано на восстановлении оксидом углерода аммиачных растворов оксида серебра и последующем колориметрическом определении окрашенных растворов. При анализе пробы воздуха получены следующие данные: содержание СО составило 0,75 мг; скорость отбора пробы – 0,5 л/мин; время аспирации – 12 минут; температура воздуха – 19,5°С; атмосферное давление – 745 мм рт. ст. Рассчитать степень загрязненности воздуха, если ПДК для СО 20 мг/м3. Ответ: 0,13 мг/м3.

Задача №8. Анализ проб воздуха на содержание фтора проводится по реакции с метиловым красным. ПДК фтора в воздухе 0,15 мг/м3. Проба атмосферного воздуха протягивалась через поглотительный прибор со скоростью 10 л/час. Ослабление окраски поглотительного раствора произошло через 5 минут. Содержание фтора в пробе составило 3,8 мкг. Определить степень загрязненности воздуха, если отбор проб проводился при температуре 20°С и давлении 98,5 Кпа. Ответ: 5,06 мг/м3.

Задача №9. Определение тетраэтилсвинца в атмосферном воздухе основано на реакции с дитизоном. ПДК тетраэтилсвинца в воздухе 0,005 мг/м3. Исследуемый воздух со скоростью 3 л/мин в течение 2 часов протягивают через поглотители для кипящего слоя. Содержание свинца в пробе составило 4 мкг. Коэффициент пересчета свинца на тетраэтилсвинец равен 1,56. Определить загрязненность воздуха тетраэтилсвинцом, если отбор проб проводился при температуре 17°С и давлении 766 мм рт. ст. Ответ: 0,018 мг/м3.

Задача №10. При анализе атмосферного воздуха на содержание кадмия, отбор проб проводился при температуре 23°С и давлении 99 Кпа. Исследуемый воздух протягивали со скоростью 10 л/мин в течение 3 минут через укрепленный в патроне перхлорвиниловый фильтр. Анализ основан на способности иодидного комплексного аниона кадмия давать малорастворимые соединения с трифенилтетразолийхлоридом. Концентрация кадмия в пробе составила 7,0 мкг. Определить загрязненность воздуха кадмием, если ПДК кадмия в воздухе составляет 0,1 мг/м3. Ответ: 0,259 мг/м3.

Задача №11. ПДК селена в воздухе составляет 2 мг/м3. Метод основан на реакции селена (IV) с 3,3`–диаминобензидином, экстрагировании образующегося желтого комплекса монопиазоселена и измерении оптической плотности экстракта. Исследуемый воздух со скоростью 20 л/мин в течение 25 минут протягивают с помощью автомобильного аспиратора через укрепленный в патроне фильтр АФА-В-18. Содержание селена, определенное по градуировочному графику составило 1,7 мкг. Рассчитать концентрацию селена в исследуемом воздухе, если отбор проб проводился при температуре 20,5°С и давлении 753 мм рт. ст. Ответ: 0,0037 мг/м3.

Задача №12. На нефтеперерабатывающем заводе произошёл аварийный сброс нефтепродуктов в количестве 500 кг в ближайшее озеро. Выживут ли рыбы, обитающие в озере, если известно, что примерная масса вода равна 10 000 т., а токсическая концентрация нефтепродуктов для рыб составляет 0,05 мг/л?

Задача №13. Самым дешёвым веществом, снижающим кислотность растворов является известняк CaCO3. Рассчитайте какое минимальное количество его потребуется для обработки 1000 м3 сточной воды с pH 4, направляемой на биоочистку, если оптимальное значение pH для деятельности бактерий составляет 6-7 единиц.

Задача №14. По имеющимся данным при жарке 1 кг мяса в воздух попадает 190 × 10-6 мг/м3 бенз(а)пирена, 100 г полукопченой колбасы содержит от 120 до 450 × 10-6 мг/м3, окорока – до 3000 × 10-6 мг/м3, а с одной сигаретой человек вдыхает до 80 × 10-6 мг/м3. Бенз(а)пирен всегда сопутствует копченым и жареным продуктам. Оцените объем кухни в Вашем доме. Какая концентрация бенз(а)пирена может быть на кухне при жарке 1 кг мяса? Какие меры следует предпринять, чтобы уменьшить концентрацию? Какие виды кулинарной обработки продуктов более предпочтительны во избежание канцерогенной опасности? Сопоставьте ориентировочно канцерогенную опасность, связанную с поступлением бенз(а)пирена в организм при питании, курении и пребывании на перекрестке с интенсивным движением.

Лабораторная работа №1.

Цель: изучение состояния проб воды по органолептическим показателям.

Объект изучения: пробы воды из различных водоемов, водопроводной воды (студенты самостоятельно берут пробы воды (см. раздел 4.2 курса лекций)).

Оборудование и материалы: термометр, колба вместимость 250 мл с пробкой, пробирка высотой 15-20см, шкала миллиметровая или линейка. Для определения кислотности – индикаторная бумага, шкала pH. Для определения органических веществ в воде 5% раствор перманганата калия и дистиллированная вода.

Первичную оценку качества воды в водоеме проводят, определяя её температуру и органолептические характеристики. Определение температуры воды необходимо для контроля тепловых загрязнений водоема, по этому исследования следует проводить в нескольких точках, отстоящих друг от друга на несколько сотен метров.

Органолептические характеристики воды определяются с помощью органов зрения (мутность, цветность) и обоняния (запах).

1. Определение запаха:

1. заполните колбу водой на 1/3 объема и закройте пробкой;

2. взболтайте содержимое колбы;

3. откройте колбу и, осторожно, неглубоко вдыхая воздух, сразу же определите характер и интенсивность запаха. Если запаха сразу не ощущается или запах неотчетливый, испытания можно повторить, нагрев воду в колбе до температуры 60 градусов (подержав колбу в горячей воде);

4. Интенсивность запаха определить по пятибалльной системе. Характер запаха определить по таблице.

Таблица 1.2

Определение интенсивности запаха

Интенсивность запаха.

Характер появления запаха.

Оценка интенсивности запаха.

Нет

Запах не ощущается

0

Очень слабая

Запах сразу не ощущается, но обнаруживается при тщательном исследовании (при нагревании воды.)

1

Слабая

Запах замечается, если обратить на него внимание.

2

Заметная

Запах легко замечается и вызывает неодобрительный отзыв о воде.

3

Отчетливая

Запах обращает на себя внимания и пытается воздержаться от питья

4

Очень сильная

Запах несколько сильный, что делает воду непригодной к употреблению.

5

2. Определение цветности:

§ заполните пробирку водой до высоты 10-12см;

§ определите цветность воды, рассматривая пробирку сверху на белом фоне при достаточном боковом освещении (дневном, искусственном.);

§ выберите наиболее подходящий оттенок из приведенных либо впишите свой вариант: слабожелтоватая, светло-желтоватая, желтая, интенсивно-желтая, коричневая, красно-коричневая, другие (укажите, какие).

3. Мутность воды.

§ заполните пробирку водой до высоты 10-12см;

§ определите мутность воды, рассматривая пробирку сверху на темном фоне при достаточном боковом освещении (дневном, искусственном);

§ выберите свой вариант: слабоопалесцирующая, опалесцирующая, слабомутная, мутная, очень мутная

4. Определение кислотности воды.

§ нанесите на полоску индикаторной бумаги свежую каплю воды из источника и сравните появившееся пятно со стандартной цветной шкалой, найдите рН.

5. Обнаружение органических веществ в воде:

§ возьмите 2 пробирки, в одну из них налейте 5 мл дистиллированной воды в другую – исследуемую воду;

§ в каждую пробирку прибавьте по одной капле 5% раствора перманганата калия. В пробирке с дистиллированной водой окраска останется, а исчезновение окраски в исследуемой воде указывает на присутствие органических веществ (иногда неорганических восстановителей).

6. Определение микроорганизмов.

§ в чашку Петри наливают мясопептонный агар, слоем 0,5 см, закрывают крышкой и дают остыть;

§ пипеткой берут пробу воды и капают на поверхность питательной среды. Чашку закрывают, подписывают и ставят в термостат на 3-5 суток;

§ затем производят подсчет развившихся в чашках Петри колоний и определяют количество бактерий в 1 мл воды, считая, что из одной микробной клетки или опоры вырастает 1 колония. Тогда количество микробов (А) будет равно: A = количество колоний / степень разведения × мл воды, взятой для посева.

После определения показателей студентам требуется заполнить таблицу 1.2 (в тетради) и сделать выводы о качестве воды по взятым учебным пробам.

Таблица 1.3

Сводная таблица общих показателей качества воды

№ пробы воды

Запах

Цвет

Мутность

Кислотность

Органические вещества

Микроорганизмы

1

 

 

 

 

 

 

2

 

 

 

 

 

 

Предыдущая


Copyright © 2007-2022, Недвиговка.Ру